如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ; 求证: (1)△BCQ≌△CDP; (2)OP=OQ.
问题描述:
如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:
(1)△BCQ≌△CDP;
(2)OP=OQ.
答
证明:∵四边形ABCD是正方形,
∴∠B=∠PCD=90°,BC=CD,(2分)
∴∠2+∠3=90°,
又∵DP⊥CQ,
∴∠2+∠1=90°,
∴∠1=∠3,(4分)
在△BCQ和△CDP中,
.
∠B=∠PCD BC=CD ∠1=∠3
∴△BCQ≌△CDP.(5分)
(2)连接OB.
(6分)
由(1):△BCQ≌△CDP可知:BQ=PC,(7分)
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
而点O是AC中点,
∴BO=
AC=CO,∠4=1 2
∠ABC=45°=∠PCO,(9分)1 2
在△BOQ和△CDP中,
.
BQ=CP ∠4=∠PCO BO=CO
∴△BOQ≌△COP,
∴OQ=OP.(10分)