.△ABC中,角A,B,C所对的边分别为a,b,c,B=π/3,cosA=4/5,b=√3 (1)sinC值 (2)△面积sinC=sin(120-A)=sin120cosA-cos120sinA=(根下3)/2*(4/5)+(1/2)*(3/5)=(4倍根下3 +3)/10a=b/sinB*sinA=2*3/5=6/5S=0.5absinC=0.5*6/5*(根下3)*(4倍根下3 +3)a/sinA=b/sinB ,a=b/sinB*sinA=6/5S=1/2*absinC=(9根号3+36)/50
问题描述:
.△ABC中,角A,B,C所对的边分别为a,b,c,B=π/3,cosA=4/5,b=√3 (1)sinC值 (2)△面积
sinC=sin(120-A)=sin120cosA-cos120sinA=(根下3)/2*(4/5)+(1/2)*(3/5)=(4倍根下3 +3)/10
a=b/sinB*sinA=2*3/5=6/5
S=0.5absinC=0.5*6/5*(根下3)*(4倍根下3 +3)
a/sinA=b/sinB ,a=b/sinB*sinA=6/5
S=1/2*absinC=(9根号3+36)/50
答
sinB=√3/2,cosB=1/2
cosA=4/5,sinA=3/5
sinC=sin(180-A-B)=sin(A+B)=sinAcosB+cosAsinB=3/5×1/2+4/5×√3/2=(4√3+3)/10
正弦定理
a/sinA=b/sinB
a/(3/5)=√3/(√3/2)
a=6/5
S=1/2absinC=1/2×6/5×√3×(4√3+3)/10=(9√3+36)/10