已知sina+sin^2a=1,则cos^2a+cos^6a+cos^8a=
问题描述:
已知sina+sin^2a=1,则cos^2a+cos^6a+cos^8a=
答
由(sina)^2+sina=1
又:(sina)^2+(cosa)^2=1
则:sina=cos²a>0
则
(cosa)^2+(cosa)^6+(cosa)^8
=(cosa)^2+(cosa)^6+(cosa)^8
=sina+(sina)^3+(sina)^4
=sina(1+sin²a+sin³a)
=sina(sina+2sin²a+sin³a)
=sin²a(1+2sina+sin²a)
=[sina(1+sina)]²
=[(1-sin²a)(1+sina)]²
=[(1-sina)(1+sina)²]²
=[(1-sina)(1+2sina+sin²a)]²
=[(1-sina)(2+sina)]²
=(2-sina-sin²a)²
=[2-(sina+sin²a)]²
=(2-1)²
=1