在三角形ABC中,角A,B,C的对边为a,b,c,点(a,b)在直线x(sinA-sinB)+ysinB=csinC上若a^2+b^2=6(a+b)-18,求三角形ABC的面积
问题描述:
在三角形ABC中,角A,B,C的对边为a,b,c,点(a,b)在直线x(sinA-sinB)+ysinB=csinC上若a^2+b^2=6(a+b)-18,求三角形ABC的面积
答
由正弦定理设a/sinA=b/sinB=c/sincC=k,则sinA=a/k,sinB=b/k,sinC=c/k,代入直线方程得,a²-ab+b²=c²①由余弦定理:a²-2abCOSc+b²=c² ②解①②得cosc=1/2,C=60度a²+b²=6(a+b)-...