求值(3/sin²40-1/cos²40)*1/2sin10应该是(3/sin²40-1/cos²40)/(2sin10)
问题描述:
求值(3/sin²40-1/cos²40)*1/2sin10
应该是(3/sin²40-1/cos²40)/(2sin10)
答
(3/sin²40-1/cos²40)*1/2sin10 *1/2sin10
=(3cos^40-sin^40)/sin^40cos^40 *1/2sin10
=4(√3cos40+sin40)(√3cos40-sin40)/sin^80 *1/2sin10
=16sin(60+40)sin(60-40))/cos^10 *1/2sin10
=16sin100sin20/cos^10 *1/2sin10
=32sin10cos^10/cos^10 *1/2sin10
=32sin10 *1/2sin10
=16sin10
≈2.778370842670885581627466028309
答
sin10=cos80=1-2sin²40=2cos²40-1(3/sin²40-1/cos²40)/(2sin10)=[(3cos²40-sin²40)/(sin²40cos²40)]/(2sin10)=4[((√3cos40+sin40)(√3cos40-sin40)/sin²80]/(...