求证sin^4α-cos^4α=sin^2α-cos^2α和sin^4α+sin^2αcos^2α+cos^2α=1
问题描述:
求证sin^4α-cos^4α=sin^2α-cos^2α和sin^4α+sin^2αcos^2α+cos^2α=1
答
1.左边=sin^4α-cos^4α=(sin^2α-cos^2α)(sin^2α+cos^2α)
=sin^2α-cos^2α=右边
2.左边=sin^4α+sin^2αcos^2α+cos^2α=(sin^2α+cos^2α)^2
=1=右边
答
sin^4α-cos^4α=sin^2α-cos^2α
利用sin^2x +cos^2x=1
sin^4x - cos^4x = (sin^2x + cos^2x) (sin^2x + cos^2x)
=sin^2x + cos^2x
sin^4x + sin^2x cos^2x +cos^2x
=sin^x ( sin^2x +c0s^2x ) + cos ^2x
= sin^2x +c0s^2x
=1
两道题关键是:(1)公式sin^2x +cos^2x=1
(2)分解因式