设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以AF1为直径的圆与直线y=根号3+2相切(1)求椭圆C的方程(2)在(1)的条件下,过又焦点F2做斜率为k的直线l与椭圆C交与M、N两点,在x轴上是否存在点P(m,0),使得以PM、PN为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由

问题描述:

设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以AF1为直径的圆与直线y=根号3+2相切
(1)求椭圆C的方程
(2)在(1)的条件下,过又焦点F2做斜率为k的直线l与椭圆C交与M、N两点,在x轴上是否存在点P(m,0),使得以PM、PN为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由