求证:cos²α+cos²(α+β﹚-2cosαcosβcos﹙α+β﹚=sin²β

问题描述:

求证:cos²α+cos²(α+β﹚-2cosαcosβcos﹙α+β﹚=sin²β

cos²α+cos²(α+β﹚-2cosαcosβcos﹙α+β﹚
=cos²α+(cosαcosβ-sinαsinβ)²-2cosαcosβ(cosαcosβ-sinαsinβ)
=cos²α+cos²αcos²β-2cosαcosβsinαsinβ+sin²αsin²β-2cos²αcos²β+2cosαcosβsinαsinβ
=cos²α-cos²αcos²β+sin²αsin²β
=cos²α(1-cos²β)+sin²αsin²β
=cos²αsin²β+sin²αsin²β
=(cos²α+sin²α)sin²β
=sin²β
得证