证明1/n+1/(n+1)+1/(n+2) +……+1/n2>1

问题描述:

证明1/n+1/(n+1)+1/(n+2) +……+1/n2>1
证明不等式:1/n+1/(n+1)+1/(n+2) +……+1/n^2>1 (n>1且n为整数) 不要用数学归纳法证明

1/n+1/(n+1)+1/(n+2) +……+1/n^2>
1/(n+1)+1/(n+1)+1/(n+2) +……+1/n^2>
2/(n+1)+1/(n+2) +……+1/n^2>
2/(n+2)+1/(n+2) +……+1/n^2>
3/(n+2)+1/(n+3)……+1/n^2>
``````
n^2+1/n^2>1