若θ,a为锐角且tanθ=(sina-cosa)/(sina+cosa),求证:sina-cosa=√2sinθ.
问题描述:
若θ,a为锐角且tanθ=(sina-cosa)/(sina+cosa),求证:sina-cosa=√2sinθ.
答
因为tanb=(sina-cosa)/(sina+cosa),所以sinb/cosb=(sina-cosa)/(sina+cosa),
所以sinbsina+sinbcosa=sinacosb-cosacosb,所以
cosacosb+sinacosb=sinacosb-cosasinb,即sin(a-b)=cos(a-b),所以tan(a-b)=1,
所以a-b=兀/4+k兀,所以b=a-兀/4-k兀,
所以根号2sinb=(根号2)sin(a-兀/4-k兀)=(根号2)sin(a-兀/4)=
(根号2)[sinacos45-cosasin45]=sina-cosa,得证