已知函数f(x)=2cos^2ωx+2√3sinωx cosωx+3(ω>0)的最小正周期为π (1)求ω的值

问题描述:

已知函数f(x)=2cos^2ωx+2√3sinωx cosωx+3(ω>0)的最小正周期为π (1)求ω的值
(2)求函数f(x)的单调区间、、、

f(x)=2cos^2ωx+2√3sinωx cosωx+3
=cos2ωx+√3sin2ωx +4
=2sin(2ωx+π/6)+4
(1)因为 T=2π/2ω=π 所以 ω=1
(2) f(x)=2sin(2x+π/6)+4
单调增为2kπ-π/2≤2x+π/6≤2kπ+π/2
2kπ-4π/6≤2x≤2kπ+2π/6
kπ-π/3≤x≤kπ+π/6 (k∈Z)
单调减为2kπ+π/2≤2x+π/6≤2kπ+3π/2
2kπ+2π/6≤2x≤2kπ+8π/6
kπ+π/6≤x≤kπ+2π/3 (k∈Z)
故 函数f(x)的单调递增区间:[kπ-π/3,kπ+π/6] (k∈Z)
同理可得:函数f(x)的单调递减区间:[kπ+π/6,kπ+2π/3] (k∈Z)