计算∫L(x^2+3y)dx+(y^2-x)dy 其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0)

问题描述:

计算∫L(x^2+3y)dx+(y^2-x)dy 其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0)

积分曲线为圆心在(2,0),半径为2的上半圆周,补充曲线L‘:y=0上从(4,0)到(0,0)的一段,这样L+L’构成了闭曲线,可以用格林公式计算.设P=x^2+3y,Q=y^2-x,则Q‘x=-1,P'y=3,注意我们现在取的闭曲线L+L'为负方向,故积分I+I'...