t检验与F检验有什么区别

问题描述:

t检验与F检验有什么区别

1.\x0d检验有单样本t检验,配对t检验和两样本t检验.\x0d单样本t检验\x0d:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性.\x0d配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后.\x0dF检验又叫方差齐性检验.在两样本t检验中要用到F检验.\x0d从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性.若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法.\x0d其中要判断两总体方差是否相等,就可以用F检验.2.\x0dt检验和方差分析的前提条件及应用误区\x0d用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的.后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子.无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的.\x0d  若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性.之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法.\x0d  值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性.\x0d  t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法.t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释.简单、熟悉加上外界的要求,促成了t检验的流行.但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性.将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较.以上两种情况,均不同程度地增加了得出错误结论的风险.而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小.