如果f(x)在[0,1]上连续,证明:∫[0->1][∫[0->x]f(t)dt]dx=∫[0->1](1-x)f(x)dx
问题描述:
如果f(x)在[0,1]上连续,证明:∫[0->1][∫[0->x]f(t)dt]dx=∫[0->1](1-x)f(x)dx
答
如果f(x)在[0,1]上连续,证明:∫[0->1][∫[0->x]f(t)dt]dx=∫[0->1](1-x)f(x)dx