已知丨a丨=√2,丨b丨=3,a与b的夹角为45°,求使向量a+λb与λa+b的夹角为锐角时,λ的取值范围
问题描述:
已知丨a丨=√2,丨b丨=3,a与b的夹角为45°,求使向量a+λb与λa+b的夹角为锐角时,λ的取值范围
答
ab=|a||b|cos45°=3
则向量a+λb与λa+b的夹角是锐角时有:
(a+λb)(λa+b)>0
则
λa²+(1+λ²)ab+λb²>0
3λ²+11λ+3>0
λ>(-11+√85)/6,或λ(-11+√85)/6,或λ