如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,交AB、AC于点M、N.求证:MN=BM+CN.
问题描述:
如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,交AB、AC于点M、N.求证:MN=BM+CN.
答
∵∠ABC、∠ACB的平分线相交于点O,
∴∠MBO=∠OBC,∠OCN=∠OCB,
∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,
∴∠MBO=∠MOB,∠NOC=∠OCN,
∴BM=MO,ON=CN,
∴MN=MO+ON,即MN=BM+CN.