设函数y=f((x^2)*arccosx+tanx)可微,则dy/dx=
问题描述:
设函数y=f((x^2)*arccosx+tanx)可微,则dy/dx=
如题
答
复合函数求导法:
y=f(u),u=x^2arccox+tanx
y'=f'(u) u'
=f'(u)[2xarccosx-x^2/√(1-x^2)+(secx)^2]
=f'(x^2arccosx+tanx)[2xarccosx-x^2/√(1-x^2)+(secx)^2]