如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为 _ cm.

问题描述:

如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为 ___ cm.

将正三棱柱ABC-A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,

在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.
由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d=

122+52
=13
故答案为:13.