∫∫zdxdy+xdydz+ydzdx 其中∑是柱面x^2+y^2=1被平面z=0及z=3所截得的在第一卦限内的前侧.

问题描述:

∫∫zdxdy+xdydz+ydzdx 其中∑是柱面x^2+y^2=1被平面z=0及z=3所截得的在第一卦限内的前侧.

补平面z=0(下侧),z=3(上侧),x=0(后侧),y=0(左侧),这几个平面与原来的曲面构成一个封闭曲面,则整个积分可用高斯公式∫∫zdxdy+xdydz+ydzdx=∫∫∫ (1+1+1) dxdydz=3∫∫∫ 1 dxdydz被积函数为1,积分结果为区...