y=(√x+1)(1/√x-1)的导数,

问题描述:

y=(√x+1)(1/√x-1)的导数,

取对数:lny=ln[√(x+1)/√(x-1)]
=(1/2)ln(x+1)-(1/2)ln(x-1)
两边对x求导得:y'/y=(1/2)(1/(x+1)-1/(x-1))
则:y'=(1/2)(1/(x+1)-1/(x-1))y
=(1/2)[1/√(x²-1)-√(x+1)/(x-1)^(3/2)]

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢.我没打清楚,根号下是x,不是x+1或x-1,麻烦你了。分母有理化:(√x+1)/(√x-1)=(√x+1)²/(x-1)=(x+1+2√x)/(x-1)y'=[(1+1/√x)(x-1) - (x+1+2√x)]/(x-1)²=[(x+√x-1-1/√x) - (x+1+2√x)]/(x-1)²=(-√x-2-1/√x)/(x-1)²=(-x-2√x-1)/[√x(x-1)²]=-(√x+1)²/[√x(x-1)²]还可再化简一下(x-1)=(√x+1)(√x-1)=-(√x+1)²/[√x(x-1)²]=-1/[√x(√x-1)²] 希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。