若多项式X^3+AX^2+BX能被(X-3)和(X-4)整除,那么A=(),B=()
问题描述:
若多项式X^3+AX^2+BX能被(X-3)和(X-4)整除,那么A=(),B=()
答
分解因式:
原式=X(X^2+AX+B)
依题意,(X-3)一定与(X-4)互质,
所以(X^2+AX+B)也一定能被它们的积整除,
即(X^2-7X+12)
显然,A=-7,B=12