对于数列极限来说,若存在任意给定的ε,无论其多么小,总存在正整数N.

问题描述:

对于数列极限来说,若存在任意给定的ε,无论其多么小,总存在正整数N.

ε是个希腊字母,就像英文字母的x,y,z
我尝试把这句话说得更明白一点儿吧:
若对于任意给定(给定之前,它不一定是多少,但给定之后就不许变了)的正实数(我们下面把这个正实数取个名字,叫做ε),无论ε多么小,总存在由ε所确定的正整数N(ε),使得……