两圆的半径分别是R和r(R>r),圆心距为d,若关于x的方程x2-2rx+(R-d)2=0有两个相等的实数根,则两圆的位置关系是(  ) A.一定内切 B.一定外切 C.相交 D.内切或外切

问题描述:

两圆的半径分别是R和r(R>r),圆心距为d,若关于x的方程x2-2rx+(R-d)2=0有两个相等的实数根,则两圆的位置关系是(  )
A. 一定内切
B. 一定外切
C. 相交
D. 内切或外切

因为方程有两个相等的实数根,所以判别式等于0.
则:△=(2r)2-4(R-d)2=0,
[2r-2(R-d)][2r+2(R-d)]=0
得到:d=R+r或d=R-r.
因此两圆外切或者内切.
故选D.