如图①,线段AB、CD相交于点O,连接AD、CB、如图②,在图①的条件下

问题描述:

如图①,线段AB、CD相交于点O,连接AD、CB、如图②,在图①的条件下
已知:如图1,线段AB、CD相交于点O,连接AD、CB、如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;
(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)
(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间数量关系.(写出解答过程)

(1)根据三角形的内角和等于180°,易得∠A+∠D=∠B+∠C;
(2)仔细观察图2,不难看出它有两个图1构成ADMCP,APNCB.由此,得到两个关系式∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,再由角平分线的性质得∠1=∠2,∠3=∠4,两式相减,即可得结论.
(3)2∠P=∠B+∠D.