用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( ) A.1 B.2 C.3 D.4
问题描述:
用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )
A. 1
B. 2
C. 3
D. 4
答
设摆出的三角形的三边有两边是x根,y根,则第三边是(12-x-y)根,根据三角形的三边关系定理得到:
得到:x<6,y<6,x+y>6又因为x,y是整数,因而同时满足以上三式的x,y的分别值是(不计顺序):2,5;3,4;3,5;4,4;4,5;5,5.则第三边对应的值是:5;5;4;4;3;2.因而三边的值可能是:2,5,5;或3,4,5;或4,4,4共三种情况,则能摆出不同的三角形的个数是3.
x+y>12-x-y x+(12-x-y)>y y+(12-x-y)>x
故选C.