函数f(x)=根号【2-(x+7)/(x+2)】的定义域为A,g(x)=lg【(2x+b)(ax+1)】(b>0,a∈R)

问题描述:

函数f(x)=根号【2-(x+7)/(x+2)】的定义域为A,g(x)=lg【(2x+b)(ax+1)】(b>0,a∈R)
函数f(x)=根号【2-(x+7)/(x+2)】的定义域为A,g(x)=lg【(2x+b)(ax+1)】(b>0,a∈R)的定义域为B.若A包含于B,求a,b的取值范围.

函数f(x)=根号【2-(x+7)/(x+2)】的定义域为A,g(x)=lg【(2x+b)(ax+1)】(b>0,a∈R)的定义域为B.若A包含于B,求a,b的取值范围.
解析:函数f(x)= √[2-(x+7)/(x+2)]
A:2-(x+7)/(x+2)>=0==>2(x+2)>=(x+7) ==>x>=3
G(x)=lg[(2x+b)(ax+1)](b>0,a∈R)
(2x+b)(ax+1)>0
B:
当a>0且ab>2时,x-1/a
当a>0且ab=2时,x≠-(ab+2)/(4a)
当a>0且ab-b/2
当a2时,-b/20且ab=2时,x≠-(ab+2)/(4a)b>0
当a>0且ab-2/3,取b>0
当a=0时,-b/2-6,取b>0
当a2时,-b/2