设函数f(x)=x2-2x+2,x∈[t,t+1](t∈R)的最小值为g(t),求g(t)的表达式.

问题描述:

设函数f(x)=x2-2x+2,x∈[t,t+1](t∈R)的最小值为g(t),求g(t)的表达式.

f(x)=x2-2x+2=(x-1)2+1,所以,其图象的对称轴为直线x=1,且图象开口向上.①当t+1<1,即t<0时,f(x)在[t,t+1]上是减函数,所以g(t)=f(t+1)=t2+1;②当t≤1≤t+1,即0≤t≤1时,函数f(x)在顶点处取得...