如图,梯形ABCD中,AB∥CD,对角线AC、BD交于点O,∠1=∠2,AB=2BO;求证:CD=3AB.
问题描述:
如图,梯形ABCD中,AB∥CD,对角线AC、BD交于点O,∠1=∠2,AB=2BO;求证:CD=3AB.
答
证明:∵∠ABO=∠ABD,∠1=∠2,
∴△BAO∽△BDA,
∴
=OB AB
AB BD
∴BD=2AB,
则BD=4BO,
∴OD=3OB,
∵在梯形ABCD中,AB∥CD,
∴△BAO∽△DCO,
∴OB:0D=AB:CD=1:3,
∴CD=3AB.