∫xln(1-x)/(1+x)dx 的不定积分?

问题描述:

∫xln(1-x)/(1+x)dx 的不定积分?
 

∫ln[(1+x)/(1-x)] dx=x*ln[(1+x)/(1-x)]-∫x d{ln[(1+x)/(1-x)]},分部积分法=xln[(1+x)/(1-x)]-∫x*-2/(x^2-1) dx,对ln[(1+x)/(1-x)]求微分=xln[(1+x)/(1-x)]+2∫x/(x^2-1) dx,令t=x^2-1,dt=2x dx→dx=dt/(2x)=xln[...ln(1+x)/(1-x)前面还有个x呀

是这样的吗∫ xln[(1 + x)/(1 - x)] dx
= ∫ ln[(1 + x)/(1 - x)] d(x²/2)
= (1/2)x²ln[(1 + x)/(1 - x)] - (1/2)∫ x² d[ln(1 + x)/(1 - x)]
= (1/2)x²ln[(1 + x)/(1 - x)] - (1/2)∫ x² * 2/(1 - x²) dx
= (1/2)x²ln[(1 + x)/(1 - x)] + ∫ [(1 - x²) - 1]/(1 - x²) dx
= (1/2)x²ln[(1 + x)/(1 - x)] + ∫ dx - ∫ dx/(1 - x²)
= (1/2)x²ln[(1 + x)/(1 - x)] + x + (1/2)ln|(1 - x)/(1 + x)| + C解决了吗?解决了麻烦采纳一下,谢谢了

和书上答案不一样呢能变化成这个形式吗我看下把Ln合并一下是一样的呀怎么合并呢。。不会哦哦会了谢谢啦~不客气