已知f(x)=(1/ax−1+1/2)•x3(a>0且a≠1). (1)求函数f(x)的定义域; (2)讨论f(x)的奇偶性; (3)若f(x)>0在定义域上恒成立,求a的取值范围.
问题描述:
已知f(x)=(
+1
ax−1
)•x3(a>0且a≠1).1 2
(1)求函数f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)若f(x)>0在定义域上恒成立,求a的取值范围.
答
(1)要使函数有意义,则ax-1≠0,即x≠0,∴函数f(x)的定义域为{x|x≠0}.
(2)∵函数f(x)的定义域为{x|x≠0}.
∴定义域关于原点对称,
则f(x)=(
+1
ax−1
)•x3=1 2
•x3,
ax+1 2(ax−1)
∴f(-x)=
•(−x)3=-
a−x+1 2(a−x−1)
•(−x3)=1+ax
2(1−ax)
•x3=f(x),
ax+1 2(ax−1)
∴f(x)是偶函数;
(3)∵f(x)是偶函数;
∴f(x)>0在定义域上恒成立,
则只需要当x>0时,f(x)>0恒成立即可,
即f(x)=
•x3>0即可,
ax+1 2(ax−1)
∴ax-1>0,
即ax>1,
∵x>0,
∴a>1,
即求a的取值范围是a>1.