求证:e^(-x)+sinx<1+1/2(x∧2)(0

问题描述:

求证:e^(-x)+sinx<1+1/2(x∧2)(0

利用高阶中值定理:
e^(-x)= 1 - x + 1/2 * x^2 - 1/6 * e^(-y1) * x^3; (1)
sinx= x - 1/6 * cos y2 * x^3; (2)
其中y1,y2 属于(0,1); (3)
(1),(2)相加并注意到(3),即得结果.