证明:tan^2a-sin^2a=tan^2*sin^2a
问题描述:
证明:tan^2a-sin^2a=tan^2*sin^2a
答
tan^2a-sin^2a
=sin^2a/cos^2a-sin^2a
=(sin^2a-cos^2a*sin^2a)/cos^2a
=sin^2a(1-cos^2a)/cos^2a
=sin^2a*sin^2a/cos^2a
=tan^2*sin^2a