如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.(Ⅰ)证明:EF∥平面PCD;(Ⅱ)若PA=AB,求EF与平面PAC所成角的大小.

问题描述:

如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.

(Ⅰ)证明:EF∥平面PCD;
(Ⅱ)若PA=AB,求EF与平面PAC所成角的大小.

(Ⅰ)证明:如图,连接BD,则E是BD的中点.又F是PB的中点,所以EF∥PD.因为EF不在平面PCD内,所以EF∥平面PCD.(6分)(Ⅱ)连接PE.因为ABCD是正方形,所以BD⊥AC.又PA⊥平面ABC,所以PA⊥BD.因此BD⊥平面PAC...
答案解析:(Ⅰ)欲证EF∥平面PCD,根据直线与平面平行的判定定理可知只需证EF与平面PCD内一直线平行即可,连接BD,根据中位线可知EF∥PD,而EF不在平面PCD内,满足定理所需条件;
(Ⅱ)连接PE,根据题意可知BD⊥AC,又PA⊥平面ABC,则PA⊥BD,从而BD⊥平面PAC,根据线面所成角的定义可知∠EPD是PD与平面PAC所成的角,而EF∥PD,则EF与平面PAC所成的角的大小等于∠EPD,在Rt△PED中,求出此角即可.
考试点:直线与平面平行的判定;直线与平面所成的角.


知识点:本题主要考查空间线线、线面、面面位置关系,线面角大小计算,同时考查空间想象能力和推理论证能力.