设f(x)在[a,b]上可导,且f'(x)≤M,f(a)=0,求证∫(a,b)f(x)dx≤M/2(b-a)^2

问题描述:

设f(x)在[a,b]上可导,且f'(x)≤M,f(a)=0,求证∫(a,b)f(x)dx≤M/2(b-a)^2

证明:用中值定理
∵f(a)=0
∴∫(a,b)f(x)dx
=∫(a,b)f(x)dx-f(a)(b-a)
=∫(a,b)[f(x)-f(a)]dx
=∫(a,b)f'(ξ)(x-a)dx
=f'(ξ)∫(a,b)(x-a)dx,其中ξ∈(a,b)
≤M∫(a,b)(x-a)dx
=M/2[(b-a)²]
证毕.