非齐次线性方程组问题
问题描述:
非齐次线性方程组问题
非齐次线性方程组的(秩)与(阶)的关系,方程AX=B 何时(有解)(唯一解)(无穷多解)
齐次线性方程组的(秩)与(阶)的关系,方程AX=B 何时(有解)(唯一解)(无穷多解)
(矩阵的秩)和(解空间的秩),
答
问题一:
非齐次线性方程组Ax=b的解要用增广矩阵的秩来判定:
1、当r(A)
齐次线性方程组Ax=0的解的判定方法:(齐次线性方程恒有解,唯一的区别是解是不是零解,零解就是解全部为零的解,唯一解就是零解)
1、如果A是m*n矩阵,它有非零解的充分必要条件是:r(A)
1、通俗的说,矩阵的秩就是指矩阵通过初等行变换和初等列变换得到的非零行或非零列的个数.
2、由于齐次方程组Ax=0恒有解(必有零解),当有非零解时,由于解向量的任意线性组合仍是该齐次线性方程组的解向量,因此Ax=0的全体解向量构成一个向量空间,成为该方程组的解空间.解空间的维数是n-r(A).
你提到的解空间的秩,我想应该指的是解空间的维数吧.
最近在复习线性代数,刚好看到这一题,一个字一个字打上来的.希望你可以采纳哦.如果有什么问题不懂的可以给我的邮箱xuxu-20@163.com发邮件,大家共同进步哈.很乐意回答你的问题.