答
(1)∵抛物线y=ax2-3ax+b过A(-1,0)、C(3,2),
∴0=a+3a+b,2=9a-9a+b.
解得a=-,b=2,
∴抛物线解析式y=-x2+x+2.
(2)如图1,过点C作CH⊥AB于点H,
由y=-x2+x+2得B(4,0)、D(0,2).
又∵A(-1,0),C(3,2),
∴CD∥AB.
由抛物线的对称性得四边形ABCD是等腰梯形,
∴S△AOD=S△BHC.
设矩形ODCH的对称中心为P,则P(,1).
由矩形的中心对称性知:过P点任一直线将它的面积平分.
∴过P点且与CD相交的任一直线将梯形ABCD的面积平分.
当直线y=kx-1经过点P时,
得1=k-1
∴k=.
∴当k=时,直线y=x-1将四边形ABCD面积二等分.
(3)如图2,由题意知,
∵△AEF绕平面内某点旋转180°后得△MNQ,
∴设绕点I旋转,联结AI,NI,MI,EI,
∵AI=MI,NI=EI,
∴四边形AEMN为平行四边形,
∴AN∥EM且AN=EM.
∵E(1,-1)、A(-1,0),
∴设M(m,n),则N(m-2,n+1)
∵M、N在抛物线上,
∴n=-m2+m+2,n+1=-(m-2)2+(m-2)+2,
解得m=3,n=2.
∴M(3,2),N(1,3).
答案解析:首先把已知坐标代入解析式求出抛物线解析式.然后作辅助线过点C作CH⊥AB于点H,得出四边形ABCD是等腰梯形,由矩形的中心对称性得出过P点且与CD相交的任一直线将梯形ABCD的面积平分.设M(m,n),N(m-2,n+1)利用等式关系求出m,n的值后即可.
考试点:二次函数综合题.
知识点:本题的综合性强,是不可多得的一道答题.重点考查了二次函数的有关知识以及平行四边形,梯形的性质,难度较大.