直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为______.
问题描述:
直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为______.
答
两个条直线的交点坐标为(-1,3),且当x>-1时,直线l1在直线l2的上方,故不等式k2x>k1x+b的解集为x<-1.
故本题答案为:x<-1.
答案解析:由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.
考试点:一次函数与一元一次不等式.
知识点:本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.