如图,A、F、E、B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD. (1)求证:△ACE≌△BDF; (2)求证:△ACF≌△BDE.
问题描述:
如图,A、F、E、B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.
(1)求证:△ACE≌△BDF;
(2)求证:△ACF≌△BDE.
答
证明:(1)如图,∵AC⊥CE,BD⊥DF,
∴∠ACE=∠BDF=90°.
∴在Rt△ACE与Rt△BDF中,
,
AC=BD AE=BF
∴Rt△ACE≌Rt△BDF(HL);
(2)由(1)知,Rt△ACE≌Rt△BDF,则∠A=∠B.
又AE=BF,
∴AE-EF=BF-EF,即AF=BE.
∴在△ACF与△BDE中,
,
AC=BD ∠A=∠B AF=BE
∴△ACF≌△BDE(SAS).