如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长.

问题描述:

如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.

(1)直线BD是否与⊙O相切?为什么?
(2)连接CD,若CD=5,求AB的长.

(1)直线BD与⊙O相切.理由如下:
如图,连接OD,
∵∠DAB=∠B=30°,∴∠ADB=120°,
∵OA=OD,∴∠ODA=∠OAD=30°,
∴∠ODB=∠ADB-∠ODA=120°-30°=90°.
所以直线BD与⊙O相切.
(2)连接CD,
∠COD=∠OAD+∠ODA=30°+30°=60°,
又OC=OD
∴△OCD是等边三角形,
即:OC=OD=CD=5=OA,
∵∠ODB=90°,∠B=30°,
∴OB=10,
∴AB=AO+OB=5+10=15.
答案解析:(1)连接OD,通过计算得到∠ODB=90°,证明BD与⊙O相切.
(2)△OCD是边长为5的等边三角形,得到圆的半径的长,然后求出AB的长.
考试点:切线的判定;含30度角的直角三角形;圆周角定理.
知识点:本题考查的是切线的判断,(1)根据切线的判断定理判断BD与圆相切.(2)利用三角形的边角关系求出线段AB的长.