(1+1/2)*(1-2/1)*(1=1/3)*(1-1/3)……(1+1/99)*(1-1/99)怎样简算

问题描述:

(1+1/2)*(1-2/1)*(1=1/3)*(1-1/3)……(1+1/99)*(1-1/99)怎样简算

把(1+1/n)和(1-1/n)分开相乘,写出这两类相乘的式子,(1+1/2)×(1+1/3)×(1+1/4)×……×(1+1/n)×(1+1/n+1)=(3/2)*(4/3)*(5/4)*……*(n+1/n)*(n+2/n+1)=n+2/2,同理:(1-1/n)相乘等于1/n,于是这个式子最后的结...