某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支

问题描述:

某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.

∵150×25=3750<4800,
∴购买的团体票超过25张,
设共购买了x张团体票,
由题意列方程得x×[150-2(x-25)]=4800,
x2-100x+2400=0,
解得x1=60,x2=40,
当x1=60时,超过25人的人数为35人,票价降70元,降价后为150-70=80元<100元,不符题意,舍去,
x2=40符合题意,∴x=40,
答:共购买了40张团体票.