p为圆C:x2+y2=4上的动点,A(4.0),M满足向量AM=2向量MP,求M的轨迹方程

问题描述:

p为圆C:x2+y2=4上的动点,A(4.0),M满足向量AM=2向量MP,求M的轨迹方程
是x平方加y平方等于4

设P点的坐标为(2cosθ,2sinθ)根据题意知,向量AP=(2cosθ-4,2sinθ)向量AM=(4cosθ/3-8/3,4sinθ/3)所以M点坐标为(4cosθ/3+4/3,4sinθ/3)设M(x,y),x=4cosθ/3+4/3,y=4sinθ/3,那么有(x-1)^2+y^2=(3/4)^2...