若sin^4a+cos^4a=1,则sina+cosa=

问题描述:

若sin^4a+cos^4a=1,则sina+cosa=

(1) 当 sin a =0 时,
  cos a = ±√ [ 1 -(sin a)^2 ]
  = ±1,
  满足 (sin a)^4 +(cos a)^4 =1.
  此时 sin a +cos a = ±1.
  (2) 当 sin a = ±1 时,
  cos a = ±√ [ 1 -(sin a)^2 ]
  =0.
  满足 (sin a)^4 +(cos a)^4 =1.
  此时 sin a +cos a = ±1.
  (3) 当 sin a≠0 且 sin a ≠ ±1 时,
  0