△ABC的三边a,b,c的倒数成等差数列,求证B<π2

问题描述:

△ABC的三边a,b,c的倒数成等差数列,求证B<

π
2

证明:方法一:已知1a+1c=2b.得b=2aca+c,a2+c2−b2=a2+c2−(2aca+c)2≥2ac−4a2c2(a+c)2=2ac(1−2ac(a+c)2)≥2ac(1−2ac4ac)>0.即cosB=a2+c2−b22ac>0故B<π2法2:反证法:假设B≥π2.则有b>a>0,b>c>...