已知:如图,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥AB.

问题描述:

已知:如图,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,求证:DA⊥AB.

∵CE平分∠BCD,DE平分∠CDA,
∴∠1=

1
2
∠ADC,∠2=
1
2
∠BCD,
∴∠1+∠2=
1
2
∠ADC+
1
2
∠BCD=
1
2
(∠ADC+∠BCD)=90°,
∴∠ADC+∠BCD=180°,
∴AD∥BC,
∴∠A+∠B=180°,
∵CB⊥AB,
∴∠A=90°,
∴DA⊥AB.