以△ABC的AB、AC为边向外作正方形ABDE及ACGF,作AN⊥BC于点N,延长NA交EF于M点,求证:EM=MF.
问题描述:
以△ABC的AB、AC为边向外作正方形ABDE及ACGF,作AN⊥BC于点N,延长NA交EF于M点,求证:EM=MF.
答
过点E作EP垂直NM交NM的延长线于点P,过点F作FH垂直MN于点H,如下图所示,
∵∠EAP+∠BAN=90°,∠BAN+∠ABN=90°,
∴∠EAP=∠ABN,
在RT△EAP和RT△ABN中,
,
EA=AB ∠EAP=∠ABN ∠EPA=∠ANB
∴△EAP≌△ABN,
故可得:EP=AN,
同理可得:RT△FHA≌RT△ANC,
故可得:FH=AN=EP,
从而可证得:RT△EMP≌RT△FMH,
故EM=MF.