已知函数f(x)=xlnx+(4-x)ln(4-x),若a>0,b>0,证明:alna+blnb≥(a+b)lna+b/2.

问题描述:

已知函数f(x)=xlnx+(4-x)ln(4-x),若a>0,b>0,证明:alna+blnb≥(a+b)ln

a+b
2

∵f(x)=xlnx+(4-x)ln(4-x),∴f′(x)=lnx-ln(4-x)=lnx4−x.∴当x=2时,函数f(x)有最小值.a>0,b>0,不妨设a+b=4,则alna+blnb=alna+(4-a)ln(4-a)≥2•a+b2ln(a+b2)=(a+b)lna+b2.∴alna+bln...