几何题直角三角形ABC,角C是直角,BC上一点P,是BP等于AC,AC上一点Q,AQ等于CP,连
问题描述:
几何题直角三角形ABC,角C是直角,BC上一点P,是BP等于AC,AC上一点Q,AQ等于CP,连
直角三角形ABC,角C是直角,BC上一点P,是BP等于AC,AC上一点Q,AQ等于CP,连接BQ,AP交与点O,求证角BOP等于45°
答
证明:设∠PAC=a,∠QBC=b.AQ=x,QC=y,则PB=x+y,PC=x.
∠APB=a+90°,角C是直角,则tana=x/(x+y)
tanb=y/(2x+y)
tan(a+b)=[x/(x+y)+y/(2x+y)]/[1-x/(x+y)*y/(2x+y)]
=(2x²+2xy+y²)/(2x²+2xy+y²)=1
又知0