在三角形ABC中(sinB+sinC+inA)(sinb+sinC-sinA)=18/5(sinBinC),求A的正弦值.
问题描述:
在三角形ABC中(sinB+sinC+inA)(sinb+sinC-sinA)=18/5(sinBinC),求A的正弦值.
答
∵根据正弦定理,a/sinA=b/sinB=c/sinC=2R∴sinA=a/2R,sinB=b/2R,sinC=c/2R∴(sinB+sinC+sinA)(sinB+sinC-sinA)=18/5(sinBinC)可化为(b/2R+c/2R+a/2R)(b/2R+c/2R-a/2R)=18/5(b/2R*c/2R)(b/2R+c/2R)²-(a/2R)...