如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为( ) A.10 B.23 C.32 D.13
问题描述:
如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为( )
A.
10
B. 2
3
C. 3
2
D.
13
答
过A作AD⊥BC,由题意可知AD必过点O,连接OB;
∵△BAC是等腰直角三角形,AD⊥BC,
∴BD=CD=AD=3;
∴OD=AD-OA=2;
Rt△OBD中,根据勾股定理,得:
OB=
=
BD2+OD2
.
13
故选D.